ENERGY as Socio-technical Problem

Infrastructures as Interdisciplinary Research Topic

Christian Büscher | 14.03.2016
Integration of research

Purpose PROVIDING SERVICE: ENERGY sustainment of operations

Label SOCIO-TECHNICAL SYSTEMS

<table>
<thead>
<tr>
<th>Norms/Values</th>
<th>RELIABLE</th>
<th>SAFE</th>
<th>AFFORDABLE</th>
<th>SUSTAINABLE</th>
<th>consider future generations</th>
</tr>
</thead>
<tbody>
<tr>
<td>maintain operation consequences full inclusion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Definitions Heterogeneous technical and social elements
Integration of research

<table>
<thead>
<tr>
<th>Purpose</th>
<th>PROVIDING SERVICE: ENERGY sustainment of operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label</td>
<td>SOCIO-TECHNICAL SYSTEMS</td>
</tr>
<tr>
<td>Norms/Values</td>
<td>RELIABLE SAFE AFFORDABLE SUSTAINABLE maintain avoid negative operation consequences full inclusion consider future generations</td>
</tr>
<tr>
<td>Definitions</td>
<td>SYSTEM/ ENVIRONMENT Heterogeneous technical and social elements</td>
</tr>
</tbody>
</table>
Integration of research

<table>
<thead>
<tr>
<th>Purpose</th>
<th>PROVIDING SERVICE: ENERGY sustainment of operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label</td>
<td>SOCIO-TECHNICAL SYSTEMS</td>
</tr>
<tr>
<td>Norms/</td>
<td>RELIABLE SAFE AFFORDABLE SUSTAINABLE</td>
</tr>
<tr>
<td>Values</td>
<td>maintain avoid negative operation consequences</td>
</tr>
<tr>
<td></td>
<td>full inclusion consider future generations</td>
</tr>
<tr>
<td>Definitions</td>
<td>SYSTEM/ ENVIRONMENT Heterogeneous technical and social elements</td>
</tr>
</tbody>
</table>
Integration of research

<table>
<thead>
<tr>
<th>Purpose</th>
<th>PROVIDING SERVICE: ENERGY sustainment of operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label</td>
<td>SOCIO-TECHNICAL SYSTEMS</td>
</tr>
<tr>
<td>Norms/Values</td>
<td>RELIABLE maintain SAFE avoid negative operation AFFORDABLE consequences full inclusion SUSTAINABLE consider future generations</td>
</tr>
<tr>
<td>Definitions</td>
<td>SYSTEM/ ENVIRONMENT Heterogeneous technical and social elements</td>
</tr>
</tbody>
</table>
”’The overall system can be fruitfully described as posing a linked series of sociotechnical problems.’’ (Paul Edwards)

<table>
<thead>
<tr>
<th>stability</th>
<th>change</th>
</tr>
</thead>
<tbody>
<tr>
<td>structure</td>
<td>control</td>
</tr>
<tr>
<td>institution</td>
<td>redundancy</td>
</tr>
<tr>
<td>operation</td>
<td>actionability</td>
</tr>
</tbody>
</table>
The overall system can be fruitfully described as posing a linked series of sociotechnical problems.

(Paul Edwards)
Dimensions of the energy complex
1. Dimension

Structure

Institution

Energy

Operation
Complexity/ Control

Heuristic for “Large Technical Systems”
(Source: derived from Hughes, Mayntz, etc.)

<table>
<thead>
<tr>
<th>System</th>
<th>Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Processes</td>
<td>(3) Operational Couplings to ext. infrastructures</td>
</tr>
<tr>
<td>(1) Determination of Production</td>
<td></td>
</tr>
<tr>
<td>Social Processes</td>
<td>(4) Regulation/ Governance</td>
</tr>
<tr>
<td>(2) Organization of Production</td>
<td></td>
</tr>
</tbody>
</table>
2. Dimension

Structure

Institution

Energy

Operation
Redundancy/ Variety

<table>
<thead>
<tr>
<th>Variety</th>
<th>Redundancy</th>
<th>high</th>
<th>low</th>
</tr>
</thead>
<tbody>
<tr>
<td>high</td>
<td>A. learning organization; regime/ niche-constellation</td>
<td>B. experimental settings; emerging technology fields</td>
<td></td>
</tr>
<tr>
<td>low</td>
<td>C. dominant regimes path dependency lock-ins</td>
<td>D. low degree of organization</td>
<td></td>
</tr>
</tbody>
</table>
3. Dimension

Structure

Institution

Energy

Operation
Socio-technical Time

Actions and operations within the power grid, with a time-scale variance from microseconds to years

<table>
<thead>
<tr>
<th>Action or Operation</th>
<th>Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wave effects (fast dynamics, such as lightning causing surges or overvoltages)</td>
<td>Microseconds to milliseconds</td>
</tr>
<tr>
<td>Switching overvoltages</td>
<td>Milliseconds</td>
</tr>
<tr>
<td>Fault protection</td>
<td>100 milliseconds or a few cycles</td>
</tr>
<tr>
<td>Electromagnetic effects in machine windings</td>
<td>Milliseconds to seconds</td>
</tr>
<tr>
<td>Tie-line load frequency control</td>
<td>1 to 10 seconds; ongoing</td>
</tr>
<tr>
<td>Economic load dispatch</td>
<td>10 seconds to 1 hour; ongoing</td>
</tr>
<tr>
<td>System structure monitoring</td>
<td>Steady state; on-going</td>
</tr>
<tr>
<td>System state measurement and estimation</td>
<td>Steady state; on-going</td>
</tr>
<tr>
<td>System security monitoring</td>
<td>Steady state; on-going</td>
</tr>
<tr>
<td>Load management, load forecasting, and generation scheduling</td>
<td>1 hour to 1 day or more, ongoing</td>
</tr>
<tr>
<td>Maintenance scheduling</td>
<td>Months to 1 year, ongoing</td>
</tr>
<tr>
<td>Expansion planning</td>
<td>Years, ongoing</td>
</tr>
<tr>
<td>Power plant site selection, design, construction, environmental impact, etc.</td>
<td>10 years or longer</td>
</tr>
</tbody>
</table>

Technical and Social Operation

Orthogonal Relation

- ‘simple’ interface: signs and symbols
- ‘complicated’ complex: physical and social structures, institutions

social

Organization

technical

Control

Production

Regulation
Outlook

- Strategy Action: Innovation Research
- Discourse of Change
- "Real-World" Experiments
- Trust and Confidence in Systems
- Capability in Complex Systems
- Structure
- Exogenous Threats: Hazard Research
- Social Organisation: Critical Transactions
- Technical Operation: Resilience
- Energy Complex

"Real-World" Experiments

Discourse of Change

Trust and Confidence in Systems

Capability in Complex Systems

Institution

Operation